浅谈银行业的智能客服助力数字化转型
来源: 时间:2021-09-08
随着人工智能、大数据、云计算等高新技术蓬勃发展,金融行业尤其是传统银行业逐渐发生了变革。除此之外,人工服务成本不断增加、服务效率低以及智能化程度低也使得银行业的转型迫在眉睫。同时,人工智能的发展也给传统银行业带来了诸多的机遇与挑战。为了提升服务感知、服务效率、降本增效等目标,出现了智能客服的应用,它可以实现自动帮助客户回答问题、引导用户输出意图、话务分流等来提升用户体验,从而加快银行的数字化转型的步伐。

本文从智能客服机器人、语音质检分析、智能外呼、智能语音导航四个应用分析智能客服发展带来的用户价值和企业价值,详细分析银行业智能客服发展面临的机遇与挑战,并对未来提出相关的展望。


1.
背景

近年来,语音识别、合成、自然语言理解等人工智能(Artificial Intelligence,AI)技术的发展,不断的催生了各行各业的创新应用,对智能化、高效率、优服务提出了更高的要求。此外,中国人口已经进入老年型,预计2040年老年人将占比将超过20%,中间劳动力缺失,服务业的压力也不断的增加,用AI、大数据、云计算等高新技术替代人工服务成为了当前社会发展的一种趋势。


以金融业为代表的银行业,无疑是信息化最强的行业,拥有丰富的用户信息,也是重复性劳动最强的服务业。客户量不断的增多和服务人力不足存在逆差,导致服务效率降低,客户投诉率升高,因此亟需新兴的技术突破现有的服务模式。如何利用人工智能技术将客户服务中心不断的朝向智能化、个性化、精细化方向发展,也是目前银行业深入研究与探索的目标之一。

2.
银行业的智能客服应用

2.1智能客服机器人
早期的客服机器人的接入渠道主要以网页端为主,通常在企业官网为主,以文本交互为主,后期逐渐迭代APP版客服机器人。随着苹果Siri机器人的诞生,语音技术的引入带来一种新的交互方式,目前客服机器人对接渠道包括网页、短信、微信等多媒体渠道,交互形式不仅限于文本,主要包括语音、短视频、虚拟数字人多模态的方式呈现在客户视野中。

手机银行APP的应用多为解决用户简单的问题,机器人的类型也多样,主要包括问答型、任务型、闲聊型三种类型,问答型机器人是智能对话系统的初级形式,表现形式为一问一答的形式。

用户发出提问请求,系统识别用户意图之后,自动匹配相应的答案,做出相应的执行任务。单轮对话比较强调自然语言理解,但是一般不涉及上下文,指代消解,省略或隐藏信息,相对技术要求更低,实现难度也很低,应用也更加成熟可靠。它主要应用于目标明确并且对话时间较为端的浅服务类的业务中。银行业的客服机器人给客户提供理财产品的基本介绍,综合积分查询,信用卡挂失等一些基本问题的介绍,应用比较局限,但是替代人工解决问题的效率比较明显。


任务型机器人一般表现与用户多轮交互形式出现,对话过程中,机器人也会发起询问,而且多轮对话过程中还涉及到决策的过程,与单轮对话相比会显得更加的智能,在银行业的应用场景也更加的丰富。智能机器人与用户进行多轮交互的过程,可以理解为机器人进行“信息检索+决策”的过程,机器人对话过程中需要获取用户的关键信息进行语义理解和决策,并提供结果。


闲聊型机器人是检索知识库类型的,不需要任何的逻辑,只需强大的闲聊知识库即可满足用户需求。

2.2 智能质检分析

传统客户中心系统产生了大量的录音文件,而这些文件的质检工作仅仅依赖质检组长人工抽检并调听录音,这种抽检覆盖率目前行业仅占1-2%左右,覆盖量完全不足,意味着大量录音文件存在潜在价值完全被忽略。由于覆盖不足的问题,质检停留在规范客服座席人员的服务规范,无法抓取录音中存在的需求商机、产品改进建议以及企业的舆情风险等问题。应用智能语音分析技术,自然语言处理技术可以将这些海量的录音文件转为结构化文本索引,再通过业务建模,实现全量的质检,并可从中挖掘分析有价值信息,为运营和营销提供支撑(图1)。